(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
*(x, *(minus(y), y)) → *(minus(*(y, y)), x)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
*(z0, *(minus(z1), z1)) → *(minus(*(z1, z1)), z0)
Tuples:
*'(z0, *(minus(z1), z1)) → c(*'(minus(*(z1, z1)), z0), *'(z1, z1))
S tuples:
*'(z0, *(minus(z1), z1)) → c(*'(minus(*(z1, z1)), z0), *'(z1, z1))
K tuples:none
Defined Rule Symbols:
*
Defined Pair Symbols:
*'
Compound Symbols:
c
(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
*'(z0, *(minus(z1), z1)) → c(*'(minus(*(z1, z1)), z0), *'(z1, z1))
We considered the (Usable) Rules:none
And the Tuples:
*'(z0, *(minus(z1), z1)) → c(*'(minus(*(z1, z1)), z0), *'(z1, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(*(x1, x2)) = [3] + [5]x1 + [4]x2
POL(*'(x1, x2)) = [3] + [4]x1 + [3]x2
POL(c(x1, x2)) = x1 + x2
POL(minus(x1)) = [5]
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
*(z0, *(minus(z1), z1)) → *(minus(*(z1, z1)), z0)
Tuples:
*'(z0, *(minus(z1), z1)) → c(*'(minus(*(z1, z1)), z0), *'(z1, z1))
S tuples:none
K tuples:
*'(z0, *(minus(z1), z1)) → c(*'(minus(*(z1, z1)), z0), *'(z1, z1))
Defined Rule Symbols:
*
Defined Pair Symbols:
*'
Compound Symbols:
c
(5) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(6) BOUNDS(O(1), O(1))